
Fundamental Concepts of
Programming Languages

Functional Programming Fundamentals
Lecture 12

conf. dr. ing. Ciprian-Bogdan Chirila

University Politehnica Timisoara
Department of Computing and Information Technology

January 8, 2023

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 1 / 56



FCPL - 12 - Functional Programming
Fundamentals
1 Introduction

Referential transparency
Variables and assignment

2 Lambda calculus
Lambda calculus and functions
Beta reduction
Variable binding. Free variables and bound variables

3 Beta reduction
4 Name conflicts. Alfa conversions
5 Mu reduction
6 Boolean values and conditional expressions
7 Logical operators: NOT, AND, ORconf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 2 / 56



Introduction

FCPL - 12 - Functional Programming
Fundamentals
1 Introduction

Referential transparency
Variables and assignment

2 Lambda calculus
Lambda calculus and functions
Beta reduction
Variable binding. Free variables and bound variables

3 Beta reduction
4 Name conflicts. Alfa conversions
5 Mu reduction
6 Boolean values and conditional expressions
7 Logical operators: NOT, AND, ORconf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 3 / 56



Introduction

Introduction

Functional programming languages
Based on computations with functions

The execution of a pure functional program
The evaluation of expressions that contain function calls

Functional programs advantages
Are wrote fast
Are more concise
Are high level
Good for formal checking
Can be executed fast on parallel architectures

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 4 / 56



Introduction Referential transparency

Referential transparency

Important characteristic of functional programming
There are no side effects !!!

Pure functional language
Assures the referential transparency

The semantic of a construction and
the value resulted from the evaluation

depend exclusively only on the semantic of its
components

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 5 / 56



Introduction Referential transparency

Referential transparency example

For the expression (f + g) ∗ (x + y) the semantic
and thus the value depend only on:

f + g

x + y

For the subexpression f + g the semantic and thus
the value depend only on:

f and g
and it is independent of (x + y)

For the subexpression x + y the semantic and thus
the value depend only on:

x and y
and it is independent of (f + g)

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 6 / 56



Introduction Referential transparency

Referential transparency

Allows substitution of expressions with the same
semantic
Thus, we can replace

(x + y) ∗ z with x ∗ z + y ∗ z

The value of the expression does not depend on
evaluation order

x ∗ z can be replaced with z ∗ x

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 7 / 56



Introduction Variables and assignment

Variables and assignment

make an expression depend on the history of the
program execution

especially global variables

side effects

in imperative languages and
non pure functional

referential transparency is not enabled

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 8 / 56



Introduction Variables and assignment

Variables and assignment

example:
if f and g are functions depending on global variable

then the very same expression (f + g) ∗ (x + y)
may provide different values on several evaluations
depending on the global variable

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 9 / 56



Introduction Variables and assignment

Variables and assignment

example:
the expression (x + y) ∗ f will not have the same
value with

x ∗ f + y ∗ f

if f is a function which modifies the value of y

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 10 / 56



Introduction Variables and assignment

Transparency property

is very important
influences the readability of

programs
analysis
automatic formal checking

it is one of the main property of functional pure
languages

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 11 / 56



Lambda calculus

FCPL - 12 - Functional Programming
Fundamentals
1 Introduction

Referential transparency
Variables and assignment

2 Lambda calculus
Lambda calculus and functions
Beta reduction
Variable binding. Free variables and bound variables

3 Beta reduction
4 Name conflicts. Alfa conversions
5 Mu reduction
6 Boolean values and conditional expressions
7 Logical operators: NOT, AND, ORconf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 12 / 56



Lambda calculus Lambda calculus and functions

Lambda calculus

developed by mathematician Alonzo Church in the
30’s

Church presents a simple mathematical system that
allows formalization of

programming laguages

programming in general

the notation may seem unusual

it can be viewed as a simple functional language

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 13 / 56



Lambda calculus Lambda calculus and functions

Lambda calculus (LC)

from LC we can develop all the other modern
programming languages features
it can be used as a universal code in translating
functional languages

it is simple, but not necessarily an efficient technique

it can be easily interpreted

it is a mathematical system to manipulate the so
called λ expressions

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 14 / 56



Lambda calculus Lambda calculus and functions

A λ expression

a name
string of characters

a function

the application of a function

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 15 / 56



Lambda calculus Lambda calculus and functions

The function

λname.body
name preceded by λ is called the bound variable of
the function

similar to a formal parameter

body is a λ expression

the function has no name

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 16 / 56



Lambda calculus Lambda calculus and functions

The application of a function

has the form (expression expression)
the first expression is a function
the second expression is the argument

represents a concretization of the function

the name specified as a bound variable in the
expression will be replaced with the argument

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 17 / 56



Lambda calculus Lambda calculus and functions

Examples

identity function

auto-application function

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 18 / 56



Lambda calculus Lambda calculus and functions

Identity function

λx.x

bound variable
first x

body
the second x

(λx.x a) results in a

the argument can be a function itself

(λx.x λx.x) results in λx.x

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 19 / 56



Lambda calculus Lambda calculus and functions

Auto-application function

λa.(a a)
a – is the bound variable
(a a) – is the body

passing an argument to this function the effect is
that the argument is applied to itself
If we apply auto-application to the identity function

(λa.(a a) λx.x) results λx.x

If we apply the auto-application function to itself
(λa.(a a) λa.(a a)) results in (λa.(a a) λa.(a

a))

. . .
the auto-application never ends

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 20 / 56



Lambda calculus Beta reduction

β reduction

In order to simplify the writing of λ expressions we
will introduce a notation that allows us to associate
a name with a function

def identity = λx.x

def auto-application= λa.(a a)

(name argument)
the application of the name to the specified argument

(name argument) is similar to (function
argument)

where the name was associated with the function

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 21 / 56



Lambda calculus Beta reduction

β reduction

is to replace a bound variable with the argument
specified in the application

as many times as it occurs in the function body
(function argument) => expression

after one β reduction in the application from the left
results in the expression from the right

(function argument) => ... =>
expressions

the expression is obtained after several β reductions

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 22 / 56



Lambda calculus Beta reduction

Examples
Selecting the first argument

def sel first=λfirst.λsecond.first
first – bound variable
λsecond.first – the body

((sel first arg1)arg2)==

((λfirst.λsecond.first arg1) arg2)=>

(λsecond.arg1 arg2) => arg1

applied to a pair of arguments arg1 and arg2

the function returns the first argument arg1

the second argument arg2 is ignored

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 23 / 56



Lambda calculus Beta reduction

Comments

in order to simplify notation we can skip the
parentheses

when there are no ambiguities

to apply two arguments to sel first function can be
denoted

sel first arg1 arg2

the notation is of a function with two parameters

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 24 / 56



Lambda calculus Beta reduction

Comments

in λ calculus such functions are expressed through
nested functions

the function λfirst.λsecond.first applied to a
random argument (arg1) result in a function

λsecond.arg1

that applied to any other second argument returns
arg1

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 25 / 56



Lambda calculus Beta reduction

Examples
Selecting the second argument

def sel second=λfirst.λsecond.second

sel second arg1 arg2 ==

λsecond.second arg2 => arg2

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 26 / 56



Lambda calculus Beta reduction

Examples
Building a tuple of values

def build tuple arg1 arg2 ==

λfirst.λsecond.λf.(f first second) arg1 arg2 =>

λsecond.λf.(f arg1 second) arg2 =>

λf.(f arg1 arg2)

λf.(f arg1 arg2) sel first=>

sel first arg1 arg2 => ... =>arg1

λf.(f arg1 arg2) sel second=>

sel second arg1 arg2 => ... =>arg2

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 27 / 56



Lambda calculus Variable binding. Free variables and bound variables

Variables binding. Free and bound
variables

the issues addressed are similar to variables domain
from a programming language
arguments substitution in the body of a function are
well accomplished when bound variables in function
expressions are named differently
(λf.(f λx.x) λa.(a a))

the three involved functions in the expression have
f, x and a as bound variables
(λf.(f λx.x) λa.(a a)) =>

(λa.(a a) λx.x) =>

(λx.x λx.x) => λx.x
conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 28 / 56



Lambda calculus Variable binding. Free variables and bound variables

Variables binding. Free and bound
variables

(λf.(f λx.x) λa.(a a))

expression can be written like:

(λf.(f λf.f) λa.(a a)) with the λf.f result
after the substitution

for the first substitution the f bound variable is
replaced in function λf.(f λf.f) with λa.(a a)

this implies the replacement of the first f from the
expression (f λf.f)

it results (λa.(a a) λf.f) which can be further
reduced

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 29 / 56



Lambda calculus Variable binding. Free variables and bound variables

Variables binding. Free and bound
variables

we do not replace f from the body of the function
λf.f

in the new function f is a new bound variable

accidentally they have the same name

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 30 / 56



Lambda calculus Variable binding. Free variables and bound variables

The domain of the bound variable of a
function

given the function

λname.body

the domain of the name bound variable is over the
function body

the occurrences of the same name outside the
function body does not correspond to the bound
variable

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 31 / 56



Lambda calculus Variable binding. Free variables and bound variables

Examples

considering the expression

(λf.λg.λa.(f (g a)) λg.(g g))

the domain of the f bound variable is expression

λg.λa.(f (g a))

the domain of the g bound variable is expression

λa.(f (g a))

the domain of the g variable is the expression

(g g)

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 32 / 56



Lambda calculus Variable binding. Free variables and bound variables

Bound variable definition

the occurrence of a variable v in an expression E is
bound if it is present in an subexpression of E which
has the form λv.E1

v appears in the body of a function with a bound to the
variable called v

otherwise the occurrence of v is a free variable

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 33 / 56



Lambda calculus Variable binding. Free variables and bound variables

More examples

v(a b v)
v is free

λv.v(x y v)
v is bound

v(λv.(y v) y)
v is free in the first occurrence
v is bound in the second occurrence

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 34 / 56



Lambda calculus Variable binding. Free variables and bound variables

Variable domain definition

given the function

λname.body

the domain of the bound variable name extends over
the body sequences in which the occurrence of
name is free

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 35 / 56



Lambda calculus Variable binding. Free variables and bound variables

Example

given the expression

λg.(g λh.(h(g λh.(h λg.(h g)))) g)

we establish the domain of g by analyzing the
function body
(g λh.(h(g λh.(h λg.(h g)))) g)

the appearances of g outside the red marked zone
are free

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 36 / 56



Lambda calculus Variable binding. Free variables and bound variables

β reduction definition

given the application (λname.body argument)

we replace all the free occurrences of name from the
body with argument

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 37 / 56



Lambda calculus Variable binding. Free variables and bound variables

Initial example revisited

(λf.(f λf.f) λa.(a a))

the applied function is

λf.(f λf.f)

its body is

(f λf.f)

the first and only the first occurrence of f is free and
it will be replaced with the argument specified in
the application

(λa.(a a) λf.f) => (λf.f λf.f) => λf.f

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 38 / 56



Beta reduction

FCPL - 12 - Functional Programming
Fundamentals
1 Introduction

Referential transparency
Variables and assignment

2 Lambda calculus
Lambda calculus and functions
Beta reduction
Variable binding. Free variables and bound variables

3 Beta reduction
4 Name conflicts. Alfa conversions
5 Mu reduction
6 Boolean values and conditional expressions
7 Logical operators: NOT, AND, ORconf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 39 / 56



Beta reduction

β reduction strong definition

given an application (λname.body argument)

we replace all occurences of name from the body
with the argument

e.g. (λf.(f λf.f) λa.(a a))

the applied function is λf.(f λf.f)

its body is (f λf.f)

(λa.(a a) λf.f)

(λf.f λf.f)

λf.f

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 40 / 56



Name conflicts. Alfa conversions

FCPL - 12 - Functional Programming
Fundamentals
1 Introduction

Referential transparency
Variables and assignment

2 Lambda calculus
Lambda calculus and functions
Beta reduction
Variable binding. Free variables and bound variables

3 Beta reduction
4 Name conflicts. Alfa conversions
5 Mu reduction
6 Boolean values and conditional expressions
7 Logical operators: NOT, AND, ORconf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 41 / 56



Name conflicts. Alfa conversions

Name conflicts. Alfa conversions

applying a β reduction, name conflicts may arrise

e.g.:

def f=λx.λy.(x y)

f x y == (λx.λy.(x y) y z)

=> (λy.(y y) z)

=> z z

the result is errorneous
the error may be corrected like:
(λx.λy1.(x y1) y z)

=> (λy1.(y y1) z)

=> y z

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 42 / 56



Name conflicts. Alfa conversions

Name conflicts. Alfa conversions

Given a function
λname1.body
the name of the bound variable name1 and also the free
appearances of the name1 inside the function body may
be replaced with a new name, name2 given the condition
that in λname1.body appears no free variable named
name2

The function λy.(x y) was transformed in function
λy1.(x y1)

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 43 / 56



Mu reduction

FCPL - 12 - Functional Programming
Fundamentals
1 Introduction

Referential transparency
Variables and assignment

2 Lambda calculus
Lambda calculus and functions
Beta reduction
Variable binding. Free variables and bound variables

3 Beta reduction
4 Name conflicts. Alfa conversions
5 Mu reduction
6 Boolean values and conditional expressions
7 Logical operators: NOT, AND, ORconf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 44 / 56



Mu reduction

Mu reduction

µ reduction is a transformation that (like β

reduction) allows the replacement of a λ expression
with an equivalent, simpler one

given the function
λname.(expression name)

it is equivalent to:
expression

λname.(expression name) argument

=> (expression argument)

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 45 / 56



Boolean values and conditional expressions

FCPL - 12 - Functional Programming
Fundamentals
1 Introduction

Referential transparency
Variables and assignment

2 Lambda calculus
Lambda calculus and functions
Beta reduction
Variable binding. Free variables and bound variables

3 Beta reduction
4 Name conflicts. Alfa conversions
5 Mu reduction
6 Boolean values and conditional expressions
7 Logical operators: NOT, AND, ORconf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 46 / 56



Boolean values and conditional expressions

Applied λ calculus

involves logical values

involves logical operations

the C ternary operator
condition ? ex1 : ex2

we model the logical values with the following
functions: sel first, sel second, build tuple

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 47 / 56



Boolean values and conditional expressions

Applied λ calculus

def cond=λe1.λe2.λc.(c e1 e2)

we apply this function succesively to expressions ex1 and
ex2:
cond ex1 ex2 ==

λe1.λe2.λc.(c e1 e2) ex1 ex2=>

λe2.λc.(c ex1 e2) ex2=>

λc.(c ex1 ex2)

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 48 / 56



Boolean values and conditional expressions

Applied λ calculus

the true and false values will be represented by the
sel first and sel second functions
def true = λp.λs.p

def false = λp.λs.s

resulting:
cond ex1 ex2 true => ... =>

λc.(c ex1 ex2) λp.λs.p =>

λp.λs.p ex1 ex2 => ... => ex1

similarly:
cond ex1 ex2 false => ... =>

λc.(c ex1 ex2) λp.λs.s =>

λp.λs.s ex1 ex2 => ... => ex2

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 49 / 56



Logical operators: NOT, AND, OR

FCPL - 12 - Functional Programming
Fundamentals
1 Introduction

Referential transparency
Variables and assignment

2 Lambda calculus
Lambda calculus and functions
Beta reduction
Variable binding. Free variables and bound variables

3 Beta reduction
4 Name conflicts. Alfa conversions
5 Mu reduction
6 Boolean values and conditional expressions
7 Logical operators: NOT, AND, ORconf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 50 / 56



Logical operators: NOT, AND, OR

The NOT logical operator

def not=λx.(cond false true x)

e.g.:
not true == λx.(cond false true x) true =>

cond false true true => ... => false

conversely
not false == λx.(cond false true x) false =>

cond false true false => ... => true

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 51 / 56



Logical operators: NOT, AND, OR

The AND logical operator

def and=λx.λy.(cond y false x)

e.g.:
we compute true AND false

(and true false) ==

λx.λy.(cond y false x) true false => ... =>

cond false false true => ... => false

we compute false AND true

(and false true) ==

λx.λy.(cond y false x) false true => ... =>

cond true false false => ... => false

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 52 / 56



Logical operators: NOT, AND, OR

The AND logical operator

we compute NOT false AND true

(and (not false) true) ==

λx.λy.(cond y false x) (λx.(cond false true

x)) true => ... =>

λx.λy.(cond y false x) true true => ... =>

cond true false true => ... => true

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 53 / 56



Logical operators: NOT, AND, OR

The OR logical operator

def or=λx.λy.(cond true y x)

e.g.:
we compute true OR false

(or true false) ==

λx.λy.(cond true y x) true false => ... =>

cond true false true => ... => true

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 54 / 56



Bibliography

FCPL - 12 - Functional Programming
Fundamentals
1 Introduction

Referential transparency
Variables and assignment

2 Lambda calculus
Lambda calculus and functions
Beta reduction
Variable binding. Free variables and bound variables

3 Beta reduction
4 Name conflicts. Alfa conversions
5 Mu reduction
6 Boolean values and conditional expressions
7 Logical operators: NOT, AND, ORconf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 55 / 56



Bibliography

Bibliography

1 Horia Ciocarlie - The programming language
universe, second edition, Timisoara, 2013.

2 Carlo Ghezzi, Mehdi Jarayeri - Programming
Languages, John Wiley, 1987.

3 Ellis Horrowitz - Fundamentals of programming
languages, Computer Science Press, 1984.

4 Donald Knuth - The art of computer programming,
2002.

conf. dr. ing. Ciprian-Bogdan Chirila (University Politehnica Timisoara Department of Computing and Information Technology)Fundamental Concepts of Programming Languages January 8, 2023 56 / 56


	Introduction
	Referential transparency
	Variables and assignment

	Lambda calculus
	Lambda calculus and functions
	Beta reduction
	Variable binding. Free variables and bound variables

	Beta reduction
	Name conflicts. Alfa conversions
	Mu reduction
	Boolean values and conditional expressions
	Logical operators: NOT, AND, OR
	Bibliography

